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Lecture Outline

• Topics: 
– Outliers
– Influence
– Applications with Interactions
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Case Diagnostics
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Detecting Unusual Cases

• When using regression models to explore 
associations between variables, we are 
always very interested in whether there 
are individual cases that behave 
somewhat differently than the bulk of the 
data
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Detecting Unusual Cases

• Some cases may be poorly described by 
the overall regression model
– “Outliers”

• Some cases may be overly influential in 
fitting the regression model
– “Influential cases” affect estimates
– “Highly leveraged cases” affect statistical 

significance
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Outliers

• “Outliers” are cases whose response is far 
from that predicted by the model as judged 
by the residual

• Well developed for linear regression, providing you 
assume normally distributed data

– Consider how many SD a single case is from its group 
mean relative to the sample size of the data set

» The expected magnitude of the largest residual is a 
function of n

– (Lacking anything else, still probably reasonable)
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Multiple Regression Model
. regress logfev smoker age loght if age>=9
Number of obs =     439
Prob > F      =  0.0000
R-squared     =  0.6703
Root MSE      =  .14407

logfev |  Coef. StErr.     t   P>|t|    [95% CI]
smoker |  -.054  .0209  -2.56  0.011   -.095   -.012

age |   .022  .0038   5.64  0.000    .014    .029
loght |  2.870  .1301  22.06  0.000   2.614   3.125
_cons |-11.095  .5201 -21.33  0.000 -12.117 -10.072
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Example: FEV and Smoking

• Plot of residuals versus predicted values
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Example: FEV and Smoking

• From residual plot we note extreme 
residuals
– One large positive residual 3.664 standard 

deviations from 0
• Based on the t distribution with 435 degrees of 

freedom, we would only expect 0.0139% of 
residuals to be this large if the log transformed 
FEV data were normally distributed within groups
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Example: FEV and Smoking
– Large negative residuals -4.435, -4.215,  and 

-3.593 standard deviations from 0
• Based on the t distribution with 435 degrees of 

freedom, we would only expect 0.00058%, 
0.00152% and 0.0182%, respectively, of 
studentized residuals to be this small if the log 
transformed FEV data were normally distributed 
within groups
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Detecting Unusual Cases

• How large a residual is too large?
– We are generally looking at the most extreme 

residuals, and thus we must account for the 
sample size when considering what is too 
extreme
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Detecting Unusual Cases

• This can be thought of as a multiple 
comparison problem
– Comparing the largest (smallest) residual to 

some threshold is equivalent to comparing 
every residual to that threshold

– If we have a 5% error with each such 
comparison, our total error is much higher
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Multiple Comparison Problem

• In frequentist reasoning, we try to ensure 
that our error rate is at some specified 
level α
– When only making one decision, this is 

relatively easy
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Multiple Comparison Problem

• When making multiple decisions, we must 
consider the “experiment-wise” error
– Worst case scenario: An error rate of α on 

each decision could lead to an experiment-
wise error as high as kα

• This would be the situation if all of our errors were 
“mutually exclusive”

– If all our errors were independent of each 
other, our experiment-wise error is 1-(1-α)k
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Multiple Comparison Problem

Experiment-wise Error Rate
Number of     Worst Case    Independent
Comparisons Scenario Errors

1            .0500          .0500
2            .1000          .0975
3            .1500          .1426
5            .2500          .2262
10            .5000          .4013
20           1.0000          .6415
50           1.0000          .9231  
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Bonferroni Correction

• Assume the worst case scenario
– When making k comparisons

• Test individual P values against α / k, OR
• Multiply P values by k and compare to  α

– (But don’t get absurd: P values can never be above 1)

• Easy, but conservative
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Detecting Unusual Cases

• For a level α test of outliers in a dataset 
containing n observations

• Compute an individual P value for each residual 
based on the t distribution with n-p degrees of 
freedom, where p= number of regression 
parameters

• Bonferroni: Compare the P value associated with 
the absolute value of each outlier to α / (2n)
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FEV Example

• Applying the Bonferroni correction 
identifies four cases with extreme 
residuals, when we presume normally 
distributed residuals
– But why do we think the FEV is lognormal 

within age, height, smoking groups?
– Lack of effort would logically lead to skewed 

distribution of residuals
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Detecting Influential Cases

• “Influential” cases are those cases which 
affect our inference too much
– Such cases can affect our inference by

• Changing the scientific estimate of association 
markedly from what it would be if the case were 
not in the data set

• Changing the strength of statistical evidence (e.g., 
P value) markedly from what it would be if the case 
were not in the data set
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Detecting Influential Cases

• Finding influential cases is conceptually 
quite easy
– In turn, leave each case out and see what 

happens
– There can, of course, be influential pairs 

(triples, etc.) of cases, but trying to detect 
these is hampered by the “curse of 
dimensionality”
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Detecting Influential Cases

• In linear regression, influence of individual 
cases on the scientific estimates can be 
computed without fitting all the additional 
regressions
– In other forms of regressions, “one-step”

approximations are often used to assess the 
approximate influence of a case
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Detecting Influential Cases

• Personally, I would rather separate the 
scientific measures of influence from the 
statistical measures of influence
– Scientific: Slope when each case is deleted
– Statistical:P value when each case is deleted
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Influential Cases with Interactions

• Interactions can often appear statistically 
significant when some outlier is present in 
the data
– Interactions are often able to make a model fit 

the outlier better
– But, I am very loathe to introduce an 

interaction into a model just to fit an outlier
– I examine influence of cases whenever I 

consider interactions
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FEV Example

• We could also consider sex, age, height 
interactions in the FEV data set
– We find a statistically significant interaction 

between sex, age, and height
– If we leave out the two cases with the large 

negative residuals, there is no statistically 
significant association

• I choose to not model the interaction as it is likely 
driven largely by those outliers
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Example: SEP “Normal Ranges”

• We want to find normal ranges for 
somatosensory evoked potential (SEP)
– As a first step, we want to consider important 

predictors of nerve conduction times
• If any variables such as sex, age, height, race, etc. 

are important predictors of nerve conduction times, 
then it would make most sense to obtain normal 
ranges within such groups
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Example: SEP “Normal Ranges”

• Scientifically, we might expect that height, 
age, and sex are related to the nerve 
conduction time
– Nerve length should matter, and height is a 

surrogate for nerve length
– Age might affect nerve conduction times: 

People slow down with age
– Sex: Men are SO fragile
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Example: SEP “Normal Ranges”

• Prior to looking at the data, we can also 
consider the possibility that interactions 
between these variables might be 
important
– Height - age interaction?

• Do we expect the difference in conduction times 
between 6 foot tall and 5 foot tall 20 year olds to be 
the same as the difference in conduction times 
between 6 foot tall and 5 foot tall 80 year olds?
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Example: SEP “Normal Ranges”

• We might suspect such an interaction due 
to the fact that height may not be as good 
a surrogate for nerve length in older 
people
– With age, some people tend to shrink due to 

osteoporosis and compression of 
intervertebral discs

• It is not clear that nerve length would be altered in 
such a process
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Example: SEP “Normal Ranges”

• Thus, in young people, differences in 
height probably are a better measure of 
nerve length than in old people

• Tall old people probably have been tall always
• Short old people will include some who were much 

taller when they were young
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Example: SEP “Normal Ranges”

• We can also consider the possibility of 
three way interactions between height, 
age, and sex
– Osteoporosis affects women far more than 

men
• Hence, we might expect the height - age 

interaction to be greatest in women and not so 
important in men

Applied Regression Analysis, 
June, 2003

32

Example: SEP “Normal Ranges”

• A two way interaction between height and 
age that is different between men and 
women defines a three way interaction 
between height, age, and sex
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Stratified Scatterplots
Average Time to p60 Peak: Females
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Example: SEP “Normal Ranges”

• Defining a regression model with 
interactions
– We must create variables to model the three 

way interaction term
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Example: SEP “Normal Ranges”

• Furthermore, it is a VERY GOOD idea to 
include all “main effects” and “lower order 
interactions” in the model as well

• “main effects”: the individual variables which 
contribute to the interaction

• “lower order terms”: all interactions that involve 
some combination of the variables which 
contribute to the interaction
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Example: SEP “Normal Ranges”

• Most often, we lack sufficient information 
to be able to guess what the true form of 
an interaction might be
– The most popular approach is thus to 

consider multiplicative interactions
• Create a new variable by merely multiplying the 

two (or more) interacting predictors
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Example: SEP “Normal Ranges”

• Thus for this problem we could create 
variables
– H.A = Height * Age
– H.M = Height * Male
– A.M = Age * Male
– H.A.M = Height * Age * Male
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Example: SEP “Normal Ranges”

• Interpretation of the model parameters
– In the presence of higher order terms 

(powers, interactions) interpretation of 
parameters is not easy

• We can no longer use “the change associated with 
a 1 unit difference in predictor holding other 
variables constant”

– It is generally impossible to hold other variables constant 
when changing a covariate involved in an interaction

– If not impossible, it is often uninteresting
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Example: SEP “Normal Ranges”

Interpretation of the model in terms of the 
SEP height relationship within age-sex 
strata
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Example: SEP “Normal Ranges”
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Example: SEP “Normal Ranges”

• From the above, we see the importance of 
including the main effects and lower order 
terms
– E.g., leaving out the height - sex interaction is 

tantamount to claiming that the p60 - height 
relationship among newborns is the same for 
the two sexes

• (It might be, but the chance that our lines would 
predict the truth is very slight-- we are trying to 
approximate relationships in other age ranges)
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Lines Predicted By Model
Average Time to p60 Peak: Females
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Example: SEP “Normal Ranges”

• From the inference, we find a statistically 
significant three way interaction
– P= .0471
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Example: SEP “Normal Ranges”

• I am now interested in ensuring that the 
evidence for an interaction is not based 
solely on a single person’s observation
– Hence, I consider 250 different regressions in 

which I leave out each case in turn
– I plot the slope estimates and P values for 

each variable as a function of which case I left 
out

• Case 0 corresponds to using the full data set 
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Influence on Estimated 
Parameters
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Influence on P values
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Example: SEP “Normal Ranges”

• Contrary to what I was afraid of, the only 
influential case actually lessened the 
evidence of an interaction
– When Case 140 is removed from the data, the 

evidence for an interaction is a larger estimate 
and a lower P value

– We can examine the scatterplot to see why 
Case 140 might be so influential
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Stratified Scatterplots
Average Time to p60 Peak: Females
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Example: SEP “Normal Ranges”

• So now what do I do with Case 140
– From the influence diagnostics, I now feel 

comfortable with the fact that the data really 
do suggest a three way interaction
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Example: SEP “Normal Ranges”

• Personally, I do NOT remove the case 
from the dataset when making my 
prediction intervals

• I do not know why Case 140 is so unusual
• It is possible that people like her are actually more 

prevalent in the population than my sample would 
suggest

– My best guess is that she represents 0.4% of the 
population, so leave her in 


